163 research outputs found

    Characterisation of InAs/GaAs short period superlattices using column ratio mapping in aberration-corrected scanning transmission electron microscopy

    Get PDF
    The image processing technique of columnratiomapping was applied to aberration-corrected high angle annular dark field (HAADF) images of shortperiod MBE (molecular beam epitaxy) grown InAs/GaAssuperlattices. This method allowed the Indium distribution to be mapped and a more detailed assessment of interfacial quality to be made. Frozen-phonon multislice simulations were also employed to provide a better understanding of the experimental columnratio values. It was established that ultra-thin InAs/GaAs layers can be grown sufficiently well by MBE. This is despite the fact that the Indium segregated over 3–4 monolayers. Furthermore, the effect of the growth temperature on the quality of the layers was also investigated. It was demonstrated that the higher growth temperature resulted in a better quality superlattice structure

    Prolactin delays hair regrowth in mice

    Get PDF
    Mammalian hair growth is cyclic, with hair-producing follicles alternating between active (anagen) and quiescent (telogen) phases. The timing of hair cycles is advanced in prolactin receptor (PRLR) knockout mice, suggesting that prolactin has a role in regulating follicle cycling. In this study, the relationship between profiles of circulating prolactin and the first post-natal hair growth cycle was examined in female Balb/c mice. Prolactin was found to increase at 3 weeks of age, prior to the onset of anagen 1 week later. Expression of PRLR mRNA in skin increased fourfold during early anagen. This was followed by upregulation of prolactin mRNA, also expressed in the skin. Pharmacological suppression of pituitary prolactin advanced dorsal hair growth by 3.5 days. Normal hair cycling was restored by replacement with exogenous prolactin for 3 days. Increasing the duration of prolactin treatment further retarded entry into anagen. However, prolactin treatments, which began after follicles had entered anagen at 26 days of age, did not alter the subsequent progression of the hair cycle. Skin from PRLR-deficient mice grafted onto endocrine-normal hosts underwent more rapid hair cycling than comparable wild-type grafts, with reduced duration of the telogen phase. These experiments demonstrate that prolactin regulates the timing of hair growth cycles in mice via a direct effect on the skin, rather than solely via the modulation of other endocrine factors

    Quantitative electron energy-loss spectroscopy (EELS) analyses of lead zirconate titanate

    Get PDF
    Electron energy-loss spectroscopy (EELS) analyses have been performed on a sol–gel deposited lead zirconate titanate film, showing that EELS can be used for heavy as well as light element analysis. The elemental distributions within the sol–gel layers are profiled using the Pb N<sub>6,7</sub>-edges, Zr M-edges, Ti L-edges and O K-edge. A multiple linear least squares fitting procedure was used to extract the Zr signal which overlaps with the Pb signal. Excellent qualitative information has been obtained on the distribution of the four elements. The non-uniform and complementary distributions of Ti and Zr within each sol–gel deposited layer are observed. The metal:oxygen elemental ratios are quantified using experimental standards of PbTiO<sub>3</sub>, PbZrO<sub>3</sub>, ZrO<sub>2</sub> and TiO<sub>2</sub> to provide relevant cross-section ratios. The quantitative results obtained for Ti/O and Pb/O are very good but the Zr/O results are less accurate. Methods of further improving the results are discussed

    Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging: Part I - Processing parameters, mechanical properties and microstructure

    Get PDF
    A study simulating thin slab continuous casting followed by direct charging into an equalisation furnace has been undertaken based on six low carbon (0.06wt-%) vanadium microalloyed steels. Mechanical and impact test data showed properties were similar or better than those obtained from similar microalloyed conventional thick cast as rolled slabs. The dispersion plus dislocation strengthening was estimated to be in the range 80-250MPa.A detailed TEM/EELS analysis of the dispersion sized sub-15nm particles showed that in all the steels, they were essentially nitrides with little crystalline carbon detected. In the Steels V-Nb, V-Ti and V-Nb-Ti, mixed transition metal nitrides were present. Modelling of equilibrium precipitates in these steels, based on a modified version of ChemSage, predicted that only vanadium rich nitrides would precipitate in austenite but that the C/N ratio would increase through the two phase field and in ferrite. The experimental analytical data clearly points to the thin slab direct charging process, which has substantially higher cooling rates than conventional casting, nucleating non-equilibrium particles in ferrite which are close to stoichiometric nitrides. These did not coarsen during the final stages of processing, but retained their highly stable average size of ~7nm resulting in substantial dispersion strengthening. The results are considered in conjunction with pertinent published literature

    Prolactin signalling in murine hair growth

    Get PDF
    Although prolactin has been shown to entrain hair growth cycles in seasonally responsive mammals, no comparable role has been identified in the age-dependent pelage replacement of rodents. Prolactin binds to dimerised membrane-associated prolactin receptors (PRLR) on target organs and initiates signalling via a number of intracellular pathways including the JAK-Stat5b pathway. The role of this pathway in murine hair growth was investigated by (i) PRLR gene disrupted mice, (ii) altered circulating prolactin profiles and (iii) impaired PRLR signal transduction with Stat5b gene-disrupted mice. The long (PRLR-L), and two short (PRLR-S2 and PRLR-S3) forms of the prolactin receptor were shown by RT-PCR to be expressed in the skin. These receptors were immunolocalised to the outer root sheath of the follicle as well as the epidermis and sebaceous gland. The first hair replacement cycle in PRLR gene-disrupted mice was advanced by 4 days in males and 2 weeks in females compared to wild type controls. Similarly, bromocriptine suppression of prolactin secretion advanced hair replacement by four days, which could be reversed by administration of exogenous prolactin at 18-22 days of age. In contrast, hair replacement in Stat5b-disrupted mice was delayed by two weeks. The duration of anagen, measured as the period of fibre elongation, did not differ between treated and control groups in any of these experiments. Pelage structure, fibre length and fibre diameter was not substantially altered. Pelage renewal across the body was slower during pregnancy and pseudopregnancy, and halted completely during lactation. Only after weaning was follicle reactivation resumed. As a key gestational and lactation hormone, prolactin is a likely candidate as a modulator of hair cycling at this time. An inverse relationship between PRLR-L mRNA and prolactin mRNA demonstrates the high level of prolactin signal regulation in the skin during reproduction. Hence, both reduced circulating prolactin levels and PRLR-deficiency results in a shorter telogen and hair renewal at a younger age. In contrast, when the signalling protein Stat5b is absent, follicle growth was retarded and new hair growth occurred later than in wild type mice. This could be explained by the altered pituitary feedback regulation of lactotrophs resulting in hyperprolactinemia in Stat5b-deficient mice. These results provide strong evidence that prolactin inhibits the activation of murine hair follicle growth

    Sample preparation for nanoanalytical electron microscopy using the FIB lift-out method and low energy ion milling

    Get PDF
    Thinning specimens to electron transparency for electron microscopy analysis can be done by conventional (2 - 4 kV) argon ion milling or focused ion beam (FIB) lift-out techniques. Both these methods tend to leave ''mottling'' visible on thin specimen areas, and this is believed to be surface damage caused by ion implantation and amorphisation. A low energy (250 - 500 V) Argon ion polish has been shown to greatly improve specimen quality for crystalline silicon samples. Here we investigate the preparation of technologically important materials for nanoanalysis using conventional and lift-out methods followed by a low energy polish in a GentleMill™ low energy ion mill. We use a low energy, low angle (6 - 8°) ion beam to remove the surface damage from previous processing steps. We assess this method for the preparation of technologically important materials, such as steel, silicon and GaAs. For these materials the ability to create specimens from specific sites, and to be able to image and analyse these specimens with the full resolution and sensitivity of the STEM, allows a significant increase of the power and flexibility of nanoanalytical electron microscopy

    Gallium oxide and gadolinium gallium oxide insulators on Si δ-doped GaAs/AlGaAs heterostructures

    Get PDF
    Test devices have been fabricated on two specially grown GaAs/AlGaAs wafers with 10 nm thick gate dielectrics composed of either Ga<sub>2</sub>O<sub>3</sub> or a stack of Ga<sub>2</sub>O<sub>3</sub> and Gd<sub>0.25</sub>Ga<sub>0.15</sub>O<sub>0.6</sub>. The wafers have two GaAs transport channels either side of an AlGaAs barrier containing a Si delta-doping layer. Temperature dependent capacitance-voltage (C-V) and current-voltage (I-V) studies have been performed at temperatures between 10 and 300 K. Bias cooling experiments reveal the presence of DX centers in both wafers. Both wafers show a forward bias gate leakage that is by a single activated channel at higher temperatures and by tunneling at lower temperatures. When Gd<sub>0.25</sub>Ga<sub>0.15</sub>O<sub>0.6</sub> is included in a stack with 1 nm of Ga<sub>2</sub>O<sub>3</sub> at the interface, the gate leakage is greatly reduced due to the larger band gap of the Gd<sub>0.25</sub>Ga<sub>0.15</sub>O<sub>0.6</sub> layer. The different band gaps of the two oxides result in a difference in the gate voltage at the onset of leakage of ~3 V. However, the inclusion of Gd<sub>0.25</sub>Ga<sub>0.15</sub>O<sub>0.6</sub> in the gate insulator introduces many oxide states (≤4.70Ã�Â�10<sup>12</sup> cm<sup>âÂ�Â�2</sup>). Transmission electron microscope images of the interface region show that the growth of a Gd<sub>0.25</sub>Ga<sub>0.15</sub>O<sub>0.6</sub> layer on Ga<sub>2</sub>O<sub>3</sub> disturbs the well ordered Ga<sub>2</sub>O<sub>3</sub>/GaAs interface. We therefore conclude that while including Gd<sub>0.25</sub>Ga<sub>0.15</sub>O<sub>0.6</sub> in a dielectric stack with Ga<sub>2</sub>O<sub>3</sub> is necessary for use in device applications, the inclusion of Gd decreases the quality of the Ga<sub>2</sub>O<sub>3</sub>/GaAs interface and near interface region by introducing roughness and a large number of defect states

    Maghemite-like regions at crossing of two antiphase boundaries in doped BiFeO3

    Get PDF
    We report the observation of a novel structure at the point where two antiphase boundaries cross in a doped bismuth ferrite of composition (Bi0.85Nd0.15)(Fe0.9Ti0.1)O0.3. The structure was investigated using a combination of high angle annular dark field imaging and electron energy loss spectroscopy spectrum imaging in the scanning transmission electron microscope. A three-dimensional model was constructed by combining the position and chemistry data with previous results and assuming octahedral coordination of all Fe and Ti atoms. The resulting structure shows some novel L shaped arrangements of iron columns, which are coordinated in a similar manner to FeO6 octahedra in maghemite. It is suggested that this may lead to local ferromagnetic orderings similar to those in maghemite

    Novel nanorod precipitate formation in neodymium and titanium codoped bismuth ferrite

    Get PDF
    The discovery of unusual nanorod precipitates in bismuth ferrite doped with Nd and Ti is reported. The atomic structure and chemistry of the nanorods are determined using a combination of high angle annular dark field imaging, electron energy loss spectroscopy, and density functional calculations. It is found that the structure of the BiFeO3 matrix is strongly modified adjacent to the precipitates; the readiness of BiFeO3 to adopt different structural allotropes in turn explains why such a large axial ratio, uncommon in precipitates, is stabilized. In addition, a correlation is found between the alignment of the rods and the orientation of ferroelastic domains in the matrix, which is consistent with the system's attempt to minimize its internal strain. Density functional calculations indicate a finite density of electronic states at the Fermi energy within the rods, suggesting enhanced electrical conductivity along the rod axes, and motivating future investigations of nanorod functionalities
    corecore